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The classical dynamics of a particle that is driven by a rapidly oscillating potentialswith frequencyvd is
studied. The motion is separated into a slow part and a fast part that oscillates around the slow part. The motion
of the slow part is found to be described by a time-independent equation that is derived as an expansion in
orders ofv−1 sin this paper terms to the orderv−3 are calculated explicitlyd. This time-independent equation is
used to calculate the attracting fixed points and their basins of attraction. The results are found to be in
excellent agreement with numerical solutions of the original time-dependent problem.
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Time-dependent systems typically exhibit behavior which
is more complicated than that of the corresponding time-
independent ones. Moreover, physicists have not yet devel-
oped an intuition about the dynamics of time-dependent sys-
tems to the level of the one that exists for time-independent
ones. As a result, it is difficult to predict the qualitative prop-
erties of driven systems even in cases in which it is easy to
understand the dynamics of time-independent systems that
are similar. In this work, the dynamics of some time-
dependent driven systems will be related to the dynamics of
time-independent ones. In particular, this will be done for
some systems where there is a clear separation of time
scales. This will enable qualitative and quantitative analysis
of the dynamics of some class of time-dependent systems
using the experience with time-independent ones.

There is a vast literature on methods which approximate a
dynamical system by a “simpler” system with a smaller num-
ber of degrees of freedom. These include, among others, av-
eraging methodsf1,2g, multiple time-scale analysisf2g, and
center manifold theoryf3g. In fact, the method employed in
this article can be viewed as a particular example for the
more general method of multiple time-scales analysisf2g. It
should be noted that the method used in this work is tailored
for equations of the forms1d, and therefore its application is
much simpler than that of the more general methods. How-
ever, it is representative of many physical problems.

The more known case of separation of time scales is the
adiabatic one. In this case, the system evolves on a time scale
which is much shorter than the time scale of the driving.
There are many works which treat different adiabatic ap-
proximationsf1,2g. On a qualitative level, one can under-
stand the resulting dynamics by treating the driving as it was
fixed in time, letting the system evolve, and then changing
the values of the parameters of the driving according to their
time dependence.

Less known, but not less interesting, is the opposite limit.
In this case, the typical time scales of the dynamics of the
system in absence of the driving are much longer than the
period of the driving. A remarkable effect of such driving is
“dynamical stabilization,” in which a particle, that in absence
of the driving can escape from some region, may be trapped
by the rapidly oscillating field. Examples of this phenom-
enon include the Kapitza pendulumf4g and the Paul trapf5g.

A simple treatment of rapidly driven systems is given in

textbooksf6g following Kapitza’s work on the inverted pen-
dulum f4g. In this approximate calculation the motion is
separated into a sum of a slow part and rapid oscillations
around it. The rapid oscillations are computed explicitly and
their effect on the slow motion is found. The treatment of
Landau and Lifshitz turns out to be the leading order of an
expansion inv−1 swherev is the driving frequencyd. It was
extended to the orderv−4 in recent worksf7,8g. In these
works it was demonstrated that for rapidly driven Hamil-
tonian systems it is possible to obtain a time-independent
Hamiltonian that controls the slow motion. It is obtained by
a canonical transformation as an expansion in powers ofv−1.

In this article, the method developed inf7,8g is extended
to rapidly driven classical systems in the presence of friction
where the Hamiltonian formalism is inapplicable, since en-
ergy is dissipated. Thesmodestd goal of this article is to
demonstrate how one can understand and predict the quali-
tative properties of the dynamics using very simple approxi-
mations. In particular, it will be demonstrated how this
method can be used in order to predict qualitatively the gen-
eral form of the basins of attraction for such systems and
how to compute their boundaries from the equation of mo-
tion of the slow part.

Newton’s equation of motion, for a rapidly driven system,
is given by

mẍ+ aẋ = − V08sxd − V18sx,vtd, s1d

where m is the mass of the particle anda is the friction
constant. The potential isVsx,vtd=V0sxd+V1sx,vtd, which
is chosen so that the time average ofV1 over a period van-
ishes. Derivatives with respect to the coordinate and time of

fsx,td are denoted byf8 and ḟ, respectively, whilef̄ denotes
the average over a period.

The slow and fast motion are separated with the help of
the ansatz

xstd = Xstd + jsX,Ẋ,td, s2d

wherej is periodic in the fast time variablet;vt, with a
vanishing average over a period, andXstd is the slow part of
the motion. The fast timet is treated as an independent vari-
able. One ensures thatXstd is indeed slow by choosingj in
such a way that the equation of motion forX does not depend
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explicitly on time. This can be done, at least approximately,
by expandingj in a power series inv−1, using

j = o
n=1

`
1

vnjn. s3d

Then, the functionsjn are determined, order by ordersin
v−1d, from the condition that the remaining equation of mo-
tion for X is time-independent. This procedure leads to new
time-independent terms in the equation of motion forXstd.
sThese terms cannot be canceled by a choice ofjn that will
stay bounded for large times.d An explicit derivation of the
first few terms for a similar problem can be found inf8g. For
an equation of motion of the forms1d, the perturbation
theory results in the following explicit solution forj fgiven
in terms ofXstdg:

jsX,Ẋ,vtd . −
1

mv2Es2dt

fV18g +
2Ẋ

mv3Es3dt

fV19g

+
a

m2v3Es3dt

fV18g + Osv−4d. s4d

Substitution of Eq.s4d in Eq. s1d leads to the slow equation
of motion, forXstd,

mẌ= − aẊ − V08sXd −
1

mv2Et

fV19gEt

fV18g

+
a

mv3Et

fV19gEs2dt

fV18g + Osv−4d. s5d

The symboletf¯g denotes an integral overt, definedonly
for periodic functions oft with vanishing average, which is
performed in such a way that the resulting function oft is
also periodic with vanishing average. This integral is easy to
compute using the Fourier expansion of the integrandssee
f8g for detailsd. Multiple application of the integralsj timesd
is denoted byes jdtf¯g. The overline denotes an average over
a period oft. Therefore, Eq.s5d does not depend explicitly
on timesand its solution willnot exhibit oscillations with the
external frequencyvd.

The leading-ordersv−2d correction to the motion in ab-
sence of the driving can be seen as resulting from the effec-
tive potential

Vef fsXd = V0sXd +
1

2mv2SEt

fV18sX,tdgD2

s6d

that acts on the slow motion. However, at higher orders,
terms appear which do not seem to result from a potential.
Note that in spite of the rapid oscillations, the friction, and
hence the energy dissipation, is associated only with the slow
motion sat the orderv−2d.

Equationss4d and s5d are the results of a high-frequency
perturbation theory. They result in a mapping of a time-
dependent problem into a time-independent one. In any
given order inv−1, this theory reproduces the result of the
mathematical theory of separation of time scales, but it is
much simpler. One of the goals of this article is to demon-
strate how these equations can be used to understand the

dynamics of such driven systems. It will be demonstrated by
a simple example.

Consider a particle which, apart from the friction, is under
the influence of an oscillating field given by

V1sx,vtd = Ae−bx2
sinskxdcossvt + fd. s7d

This simple system is of interest since the time average of
the potential vanishes,V0sxd=0. Therefore, the influence of
the oscillatory field is dominant even at high frequencies, in
contrast to systems withV0sxdÞ0. According to the high-
frequency perturbation theory, the slow part of the motion of
the particle can besapproximatelyd viewed as motion, with
friction, in the effective potential

Vef fsXd =
A2

4mv2e−2bX2
fk cosskXd − 2bX sinskXdg2. s8d

This effective potential is depicted in Fig. 1. It exhibits sev-
eral minima. These are of interest since a particle moving in
a time-independent potential, in the presence of friction, will
be found at one of these minima after a sufficiently long
time, in spite of the fact that the linear stability of these
points is time-dependent in the original system. While the
potentials8d, depicted in Fig. 1, has several minima, two of
those, atx. ±0.3266, are more pronounced. Based on these
observations, one can predict that after a sufficiently long
time the particle will be found in the vicinity of one of the
minima also for the time-dependent system.

In this article, we are interested mainly in the basins of
attraction of the two minima located atx. ±0.3266, that is,
the initial valuesx0;xs0d, v0; ẋs0d which evolve to these
minima for long times. These basins of attraction, for differ-
ent values of the frequency, are depicted in Fig. 2. The basins
of attraction exhibit some qualitative properties which are of
interest. At lower frequenciessv=6,10d these basins are
separated, while for higher frequenciessv=20,40d they have
a common boundary. This qualitative behavior can be under-
stood with the help of the effective potentialsFig. 1d for the
approximate time-independent system.

Consider the trajectorysof the effective time-independent

systemd which starts with the initial valuesX0=0, Ẋ0=e.0

FIG. 1. The effective potential for the slow motion. The values
of the parameters in Eq.s8d areA=m=1, b=4, k=2, andv=10.
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sthat is, arbitrarily close toX0=Ẋ0=0d. If this trajectory, after
a long time, manages to pass over the first maxima ofVef f
with positive X, then any other trajectory which starts, say,
with X0,0 and aslarge enoughd positive velocity will also

do so. In this case, the basins of attraction ofx. ±0.3266 are

separated. In contrast, if this orbit, starting atX0=0 andẊ0
=e.0, is trapped atx.0.3266 after a long time, then the
basins do have a common boundary which includes the point

FIG. 2. Basins of attraction of
xst→`d. ±0.3266 for the time-
dependent systems7d. Results for
several frequencies are presented,
while A=m=1, b=4, k=2, andf
=0.

FIG. 3. The boundary of the
basin of attraction ofx.0.3266 of
the time-dependent system, for
various phasessthin linesd, are
compared to the one of the time-
independent effective system
sheavy lined, for different frequen-
cies. The values of the phase are
f=0, p /2, p, and 3p /2.

TIME-INDEPENDENT APPROXIMATIONS FOR PERIODICALLY... PHYSICAL REVIEW E71, 036210s2005d

036210-3



X0=Ẋ0=0. Consider the effective potential depicted in Fig. 1.
A particle located nearX=0 will feel an effective force due
to it. This effective force will accelerate the particle while the
friction will decelerate it. If the friction is dominant, the par-
ticle will be trapped in the first minimum and it will be found
nearx=0.3266. . . after a long time. In contrast, if the effec-
tive force is strong enough, one can expect that the particle
will be able to pass the first maximum ofVef fsXd at positive
X and therefore will not be nearx.0.3266 after a long time.
In the example used in the present numerical investigation,
the friction does not scale with the frequency while the ef-
fective potential sand the resulting forced scales asv−2.
Therefore, one can expect to find a transition from separated
basins of attraction to basins with a common boundary as the
frequency is increased. This is consistent with the numerical
results presented in Fig. 2.

It was demonstrated that some qualitative properties of
the time-dependent system are described by properties of an
appropriate approximate time-independent system. It is of
interest to see whether one can obtain also quantitative re-
sults using the high-frequency perturbation theory. The
boundaries of one of the basins of attraction ofx.0.3266 of
the time-dependent system are compared to the ones result-
ing from the approximated time-independent system in Fig.
3. The motion of the time-dependent system depends also on
the phase of the oscillating force att=0. It is important to
note that this comparison is fairly naive since the initial val-

uesx0 andv0 are only approximately equal toX0 and Ẋ0 of
the time-independent system.

Figure 3 shows that the boundary of the basin of attraction
of the time-dependent system fluctuates around the corre-
sponding boundary of the effective time-independent system
when the phase of the field is varied. This is not surprising
since it is clear that the basins of attraction must depend on
this phase.

As was mentioned earlier, the comparison in Fig. 3 is
naive, in the sense that the coordinatesxs0d, vs0d arenot the

same as the coordinatesXs0d, Ẋs0d of the time-independent
system. However, the results presented in Fig. 3 still demon-
strate that at high frequencies, the basins of attraction of the
time-dependent system can be approximated by those of
time-independent effective ones. The size of the fluctuations
seems to decrease when the frequency is increased.

To obtain a better quantitative correspondence between
the results obtained using the high-frequency perturbation
theory and the numerical results for the time-dependent sys-
tem, one has to account for the difference between the slow

coordinatesX,Ẋ and x,v. The connection betweenxstd and

Xstd fand alsoẊstdg is given by Eq.s2d. One can use the
high-frequency perturbation theory to obtain an expansion
for j and then substitutet=0. This leads to an equation for

the initial value x0=xs0d in terms of X0=Xs0d,Ẋ0=Ẋs0d.
Similarly, by differentiating with respect to time att=0, one
obtainsv0=vs0d. The calculation results in

x0 = X0 +
A

mv2e−bX0
2
cossfdfsX0d + Osv−3d,

v0 = Ẋ0 −
A

mv
e−bX0

2
sinsfdfsX0d −

A

mv2e−bX0
2
Ẋ0 cossfdgsX0d

−
aA

m2v2e−bX0
2
cossfdfsX0d + Osv−3d, s9d

where fsX0d=k cosskX0d−2bX0 sinskX0d, while gsX0d
=f4b2X0

2−k2−2bgsinskX0d−4bX0k cosskX0d. From Eq.s9d, it
is clear that the fluctuations inv0 are of orderv−1 when the
phase is varied, while the fluctuations inx0 scale only asv−2.
This is in agreement with the fluctuations presented in Fig. 3.

To test the perturbation theory more quantitatively, the
boundary of the basin of attraction of the effective time-
independent system was mapped back to the original coordi-
nates using Eq.s9d and compared to the numerical results
obtained for the time-dependent system. To avoid compli-
cated graphs, we only present the comparison for the phase
f=p /2. The results are presented in Fig. 4. It is clear that
the agreement is excellent. Only a small difference is seen
for v=6, while for v=20 the difference between the bound-
aries cannot be observed in the plot. This demonstrates that
the high-frequency perturbation theory can be used to obtain
quantitative results and not only qualitative ones.

In this article, we have used a high-frequency perturbation

FIG. 4. Comparison between the boundary of the basin of at-
traction ofx.0.3266 of the time-independent systemsheavy lined
and the boundary of the time-dependent onesthin lined, for different
frequencies, wheref=p /2 while the rest of the parameters are
those of Fig. 2.
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theory to describe the motion of a rapidly driven classical
particle in the presence of friction. In this perturbation
theory, the motion is separated into a slow part and rapid
oscillations around itfsee Eqs.s2d–s5dg. An equation of mo-
tion for the slow coordinate, accurate to orderv−3, was ob-
tained. The oscillations of the particle around the slow solu-
tion were calculated as well. The slow motion is found to be
approximately described, to the orderv−2, by the motion of a
particle in an effective potential with friction. This suggests
that, after a long time, the particle will be found at the mini-
mum of this potential, a fact which is confirmed numerically
also for the time-dependent system given by Eq.s7d. Due to
the dissipation, these minima are surrounded by basins of
attraction, which include the initial phase-space points that
flow to those minima after a long time. The numerical re-
sults, presented in Figs. 2 and 3, demonstrate that some of
the qualitative features of the basins of attraction can be un-
derstood by considering the simpler time-independent effec-

tive system with the potential of Fig. 1. It was also shown,
in Fig. 4, that, by a more careful analysis, one can obtain
excellent quantitative agreement between the motion gener-
ated by the time-dependent equation of motion and the
motion generated by the corresponding time-independent
one.

The results presented in this article suggest that the high-
frequency perturbation theory can be used to obtain both a
qualitative and a quantitative understanding of the dynamics
of a classical rapidly driven particle in the presence of fric-
tion. The friction effectively dissipates the energysonlyd of
the slow motionsup to the orderv−2d.

This research was supported in part by the U.S.-Israel
Binational Science FoundationsBSFd, by the Minerva Center
of Nonlinear Physics of Complex Systems, by the Fund for
Promotion of Research at the Technion, and by Shlomo Ka-
plansky Academic Chair.

f1g A. J. Lichtenberg and M. A. Liebermann,Regular and Sto-
chastic MotionsSpringer-Verlag, New York, 1981d.

f2g J. A. Sanders and F. Verhulst,Averaging Methods in Nonlinear
Dynamical SystemssSpringer-Verlag, New York, 1985d.

f3g J. Carr, Applications of Centre Manifold TheorysSpringer-
Verlag, New York, 1981d.

f4g Collected Papers of P. L. Kapitza, edited by D. ter HaarsPer-
gamon Press, Oxford, 1965d; P. L. Kapitza, Zh. Eksp. Teor.

Fiz. 21, 588 s1951d.
f5g W. Paul, Rev. Mod. Phys.62, 531 s1990d.
f6g L. D. Landau and E. M. Lifshitz,MechanicssPergamon Press,

Oxford, 1976d.
f7g S. Rahav, I. Gilary, and S. Fishman, Phys. Rev. Lett.91,

110404s2003d.
f8g S. Rahav, I. Gilary, and S. Fishman, Phys. Rev. A68, 013820

s2003d.

TIME-INDEPENDENT APPROXIMATIONS FOR PERIODICALLY... PHYSICAL REVIEW E71, 036210s2005d

036210-5


