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Time-independent approximations for periodically driven systems with friction
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The classical dynamics of a particle that is driven by a rapidly oscillating potdmiitd frequencyw) is
studied. The motion is separated into a slow part and a fast part that oscillates around the slow part. The motion
of the slow part is found to be described by a time-independent equation that is derived as an expansion in
orders ofw™? (in this paper terms to the orders are calculated explicitly This time-independent equation is
used to calculate the attracting fixed points and their basins of attraction. The results are found to be in
excellent agreement with numerical solutions of the original time-dependent problem.
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Time-dependent systems typically exhibit behavior whichtextbooks[6] following Kapitza's work on the inverted pen-
is more complicated than that of the corresponding timedulum [4]. In this approximate calculation the motion is
independent ones. Moreover, physicists have not yet deveseparated into a sum of a slow part and rapid oscillations
oped an intuition about the dynamics of time-dependent sysaround it. The rapid oscillations are computed explicitly and
tems to the level of the one that exists for time-independengheir effect on the slow motion is found. The treatment of
ones. As aresult, it is difficult to predict the qualitative prop- | andau and Lifshitz turns out to be the leading order of an
erties of driven systems even in cases in which it is easy t@xpansjon inw™! (wherew is the driving frequency It was
understand the dynamics of time-independent systems th@tiended to the orden in recent works[7,8]. In these

gre si(rjnilar. 4 In this work, t'rllleb dynlamigs th nge time- \orks it was demonstrated that for rapidly driven Hamil-
lependent driven systems will be related to the dynamics gfnian systems it is possible to obtain a time-independent
time-independent ones. In particular, this will be done for

X ; .~ Hamiltonian that controls the slow motion. It is obtained by
some systems where there is a clear separation of tim

S e o : nonical transformation n expansion in powets af
scales. This will enable qualitative and quantitative analy3|s§ canonical transiormation as an expansio powers &

of the dynamics of some class of time-dependent systemts In t_rgls 3rt_|cle, tlhe “_“etlh‘)d ;jevel_op?hd [ing8] is exter;c:edt_
using the experience with time-independent ones. 0 rapidly driven classical Systems in the présence or iriction

There is a vast literature on methods which approximate 4/1€re the Hamiltonian formalism is inapplicable, since en-
dynamical system by a “simpler” system with a smaller num-€rdy is dissipated. Themodes} goal of this article is to
ber of degrees of freedom. These include, among others, afi@monstrate how one can understand and predict the quali-
eraging method$1,2], multiple time-scale analysi®], and  tative properties of the dynamics using very simple approxi-
center manifold theory3]. In fact, the method employed in mations. In particular, it will be demonstrated how this
this article can be viewed as a particular example for thenethod can be used in order to predict qualitatively the gen-
more general method of multiple time-scales analj2]sit  eral form of the basins of attraction for such systems and
should be noted that the method used in this work is tailoredhow to compute their boundaries from the equation of mo-
for equations of the fornfl), and therefore its application is tion of the slow part.
much simpler than that of the more general methods. How- Newton’s equation of motion, for a rapidly driven system,
ever, it is representative of many physical problems. is given by

The more known case of separation of time scales is the . , ,
adiabatic one. In this case, the system evolves on a time scale mix+ ax = = Vo(x) = Vi(x,wt), (1)
which is much shorter than the time scale of the driving.where m is the mass of the particle and is the friction
Ther_e are many works Which treat different adiabatic apconstant. The potential i¥(x, wt) =Vy(X) +V,(x, wt), which
proximations[1,2]. On a qualitative level, one can under- js chosen so that the time average\afover a period van-
stand the resulting dynamics by treating the driving as it wagshes. Derivatives with respect to the coordinate and time of

fixed in time, letting the system evolve, and then changin , y : o
the values of the parameters of the driving according to the?fr(])é’ gvirrea;:r;?/frdabger?:gf’ respectively, whilef denotes

time dependence. : .

Less known, but not less interesting, is the opposite limit, The slow and fast motion are separated with the help of

. ) ) ; the ansatz

In this case, the typical time scales of the dynamics of the
system in absence of the driving are much longer than the - N
period of the driving. A remarkable effect of such driving is XO =X + 54X X7, @
“dynamical stabilization,” in which a particle, that in absencewhere ¢ is periodic in the fast time variable= wt, with a
of the driving can escape from some region, may be trappedanishing average over a period, axd) is the slow part of
by the rapidly oscillating field. Examples of this phenom-the motion. The fast time is treated as an independent vari-
enon include the Kapitza pendule] and the Paul trafb].  able. One ensures thi(t) is indeed slow by choosing in

A simple treatment of rapidly driven systems is given insuch a way that the equation of motion %does not depend
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explicitly on time. This can be done, at least approximately, 0.012
by expandingé in a power series i1, using
0.01
1
&= 21 Jgn (3) 0.008 -
n=

Then, the functionst, are determined, order by ordén 30-006 -
w™1), from the condition that the remaining equation of mo-
tion for X is time-independent. This procedure leads to new 0.004 |
time-independent terms in the equation of motion X@t).
(These terms cannot be canceled by a choicg&,dhat will 0.002 |
stay bounded for large timgsAn explicit derivation of the /\ /\
first few terms for a similar problem can be found 8. For = o5 1 15 2

X O

an equation of motion of the forngl), the perturbation
theory results in the following explicit solution f@f[given

. FIG. 1. The effective potential for the slow motion. The values
in terms of X(t)]: P

of the parameters in E@8) areA=m=1, f=4, k=2, andw=10.

. 1 (@7 v (37
EX X ot) = - FJ [vil+ Ff [Vi] dynamics of such driven systems. It will be demonstrated by
© « a simple example.

a (OF , a Consider a particle which, apart from the friction, is under
+ mzwgf [Vi]+O(e™). (4) the influence of an oscillating field given by
Substitution of Eq(4) in Eqg. (1) leads to the slow equation Vi(X, wt) = AeP’ sin(kx)coq wt + ¢). (7)
of motion, for X(t), L ) . ) i
This simple system is of interest since the time average of
- o A Y (L the potential vanished/y(x)=0. Therefore, the influence of
mX= = aX = Vo(X) = @f [Vl]f [Vi] the oscillatory field is dominant even at high frequencies, in
e contrast to systems withy(x) # 0. According to the high-
o " / -4 frequency perturbation theory, the slow part of the motion of
* w° J [Vl]J Vil +Olw™. ® the particle can béapproximately viewed as motion, with

The symbolfT---] denotes an integral over, definedonly friction, in the effective potential

for periodic functions ofr with vanishing average, which is
performed in such a way that the resulting functionra VerdX) =
also periodic with vanishing average. This integral is easy to
compute using the Fourier expansion of the integrésee  This effective potential is depicted in Fig. 1. It exhibits sev-
[8] for detailg. Multiple application of the integralj times  eral minima. These are of interest since a particle moving in
is denoted by --]. The overline denotes an average overa time-independent potential, in the presence of friction, will
a period of7. Therefore, Eq(5) does not depend explicitly be found at one of these minima after a sufficiently long
on time(and its solution willnot exhibit oscillations with the  time, in spite of the fact that the linear stability of these
external frequencw). points is time-dependent in the original system. While the
The leading-ordefw™2) correction to the motion in ab- potential(8), depicted in Fig. 1, has several minima, two of
sence of the driving can be seen as resulting from the effedhose, atx= +0.3266, are more pronounced. Based on these

2
&2k cogkX) - 28X sinkX) 2.  (8)

Amw?

tive potential observations, one can predict that after a sufficiently long
- 5 time the particle will be found in the vicinity of one of the
Veff(x):VO(X)JrLz f [Vi(X, D] (6)  minima also for the time-dependent system.
2me In this article, we are interested mainly in the basins of

that acts on the slow motion. However, at higher c)rdersattraction of the two minima located &t= +£0.3266, that is,

terms appear which do not seem to result from a potentialt.h_e _|n|t|a;l VTIUES)_(OEX(O)F] UOES(O). Wh'?h evolye tc; thgife
Note that in spite of the rapid oscillations, the friction, andMNiMa for long times. These basins of attraction, for differ-

hence the energy dissipation, is associated only with the sloft vaIue.s of the. frequency, are dgpicted in Eig. 2. The basins
motion (at the orderw2). of attraction exhibit some qualitative properties which are of

Equations(4) and (5) are the results of a high-frequency interest. At onver freguenmes(u:G,lQ these basins are
perturbation theory. They result in a mapping of a time-Separated, while for higher frequencies=20,40 they have
dependent problem into a time-independent one. In anf €ommon boundary. This qualitative behavior can be under-
given order inw™, this theory reproduces the result of the Stood with the help of the effective potentidig. 1) for the
mathematical theory of separation of time scales, but it j@PProximate time-independent system.
much simpler. One of the goals of this article is to demon- Consider the trajectorfof the effective time-independent
strate how these equations can be used to understand thgstem which starts with the initial valueX,=0, X,=€>0
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FIG. 2. Basins of attraction of
X(t— )= +0.3266 for the time-
dependent systertV). Results for
several frequencies are presented,
while A=m=1, B=4, k=2, and¢
=0.

(that is, arbitrarily close t&X,=X,=0). If this trajectory, after o0 s0. In this case, the basins of attractiox ef+0.3266 are

a long time, manages to pass over the first maxim&gf  separated. In contrast, if this orbit, startingX@t=0 andX,

with positive X, then any other trajectory which starts, say,=e>0, is trapped ak=0.3266 after a long time, then the
with Xy<0 and a(large enoughpositive velocity will also  basins do have a common boundary which includes the point

0.4 T r T T 0.4 T T T

0.2 02

-02

FIG. 3. The boundary of the
basin of attraction ok=0.3266 of
the time-dependent system, for
various phases(thin lineg, are
compared to the one of the time-
independent effective  system
(heavy ling, for different frequen-
cies. The values of the phase are
$=0, 7/2, m, and 3r/2.
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0.3

Xo=X,=0. Consider the effective potential depicted in Fig. 1.
A patrticle located neak=0 will feel an effective force due

to it. This effective force will accelerate the particle while the
friction will decelerate it. If the friction is dominant, the par-
ticle will be trapped in the first minimum and it will be found
nearx=0.3266... after a long time. In contrast, if the effec-
tive force is strong enough, one can expect that the particle
will be able to pass the first maximum ®§(X) at positive

X and therefore will not be near=0.3266 after a long time.

In the example used in the present numerical investigation,
the friction does not scale with the frequency while the ef-
fective potential(and the resulting forgescales asw™.
Therefore, one can expect to find a transition from separated
basins of attraction to basins with a common boundary as the
frequency is increased. This is consistent with the numerical
results presented in Fig. 2.

It was demonstrated that some qualitative properties of
the time-dependent system are described by properties of an
appropriate approximate time-independent system. It is of
interest to see whether one can obtain also quantitative re-
sults using the high-frequency perturbation theory. The
boundaries of one of the basins of attractiorxef0.3266 of
the time-dependent system are compared to the ones result-
ing from the approximated time-independent system in Fig.
3. The motion of the time-dependent system depends also on
the phase of the oscillating force &t0. It is important to
note that this comparison is fairly naive since the initial val- -0.4 == . o :

uesx, anduv, are only approximately equal %6, and X, of ®) X
the time-independent system. FIG. 4. C _ b he bound f the basin of

Figure 3 shows that the boundary of the basin of attraction "~ ™ omparison between the boundary of the basin of at-
of the time-dependent system fluctuates around the corrdraction ofx=0.3266 of the time-independent systéheavy ling

. . . . and the boundary of the time-dependent ¢hé line), for different
sponding boundary of the effective time-independent SySterFrequencies wherep=7/2 while the rest of the parameters are
when the phase of the field is varied. This is not surprising, o
. - . . hose of Fig. 2.

since it is clear that the basins of attraction must depend on
this phase.

As was mentioned earlier, the comparison in Fig. 3is  _y _ A _p2 . A _pxd

o R = Xo— —€ePosin(¢)f(Xy) — —=€e 770X, co X
naive, in the sense that the coordinaté®, v(0) arenotthe "%~ "0 mew (@) (Xo) M2 0 04 $)g(Xo)
same as the coordinat&$0), X(0) of the time-independent aA )
system. However, the results presented in Fig. 3 still demon- =55 %0 cog ) F(Xo) + O(w ™), 9
strate that at high frequencies, the basins of attraction of the

t@me-fjependent system can be apprqximated by thos.e Ahere f(Xo) =k cogkXo) — 28X, sin(kX),  while  g(Xo)
time-independent effective ones. The size of the f'“Ctuat'°”§[4/32xg—k2—2,3]sin(kxo)—4/3x0k cogkX,). From Eq.(9), it
seems to Qecrease when th‘? fr_equency Is increased. is clear that the fluctuations i, are of orderw™ when the

To obtain a petter quantitative correspondence betW?e hase is varied, while the fluctuationsxgiscale only aso™2.
the results obtained using the high-frequency perturbatiohy;q s in agreement with the fluctuations presented in Fig. 3.

theory and the numerical results for the time-dependent sys- To test the perturbation theory more quantitatively, the

tem, one has _to account for the difference between the SIO\Pfoundary of the basin of attraction of the effective time-

coordinatesX,X andx,v. The connection betweex(t) and  independent system was mapped back to the original coordi-
X(t) [and alsoX(t)] is given by Eq.(2). One can use the nates using Eq(9) and compared to the numerical results
high-frequency perturbation theory to obtain an expansio®btained for the time-dependent system. To avoid compli-
for ¢ and then substitute=0. This leads to an equation for cated graphs, we only present the comparison for the phase
the initial value x,=x(0) in terms ofX0=X(O),XO=X(0). ¢=ml2. The results are presented in Fig. 4. It is clear that

Similarly, by differentiating with respect to time &t0, one ]Ehe a?%ee”;ﬁ”tf's e>ic§(l)lr-irr]1t. é?frflly a Smt?"t\slﬁer?ﬂcebls sgen
obtainsvy=v(0). The calculation results in or @=9, wWhile for w= e aierence between the bound-

aries cannot be observed in the plot. This demonstrates that

A the high-frequency perturbation theory can be used to obtain

5 2 A

X = X + ePX0 cod ) f(Xo) + O(w™d), quantitative _results and not only q_ualltatlve ones. _
070 me? LPTXo) + Ow™) In this article, we have used a high-frequency perturbation

0
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theory to describe the motion of a rapidly driven classicaltive system with the potential of Fig. 1. It was also shown,
particle in the presence of friction. In this perturbationin Fig. 4, that, by a more careful analysis, one can obtain
theory, the motion is separated into a slow part and rapiéxcellent quantitative agreement between the motion gener-
oscillations around ifsee Egs(2)—(5)]. An equation of mo-  ated by the time-dependent equation of motion and the
tion for the slow coordinate, accurate to orde‘r3, was ob- motion generated by the Corresponding time-independent
tained. The oscillations of the particle around the slow solugpe.

tion were calculated as well. The sloyv motion is found to be  The results presented in this article suggest that the high-
approximately described, to the order?, by the motion of & frequency perturbation theory can be used to obtain both a
particle in an effective potential with friction. This suggests qyalitative and a quantitative understanding of the dynamics
that, after a long time, the particle will be found at the mini- ¢ 4 classical rapidly driven particle in the presence of fric-
mum of this potential, a fact which is confirmed numerically tioy. The friction effectively dissipates the energnly) of

also for the time-dependent system given by &j. Due to  he slow motion(up to the order 2.

the dissipation, these minima are surrounded by basins of

attraction, which include the initial phase-space points that This research was supported in part by the U.S.-Israel
flow to those minima after a long time. The numerical re-Binational Science FoundatidBSF), by the Minerva Center
sults, presented in Figs. 2 and 3, demonstrate that some of Nonlinear Physics of Complex Systems, by the Fund for
the qualitative features of the basins of attraction can be unPromotion of Research at the Technion, and by Shlomo Ka-
derstood by considering the simpler time-independent effecplansky Academic Chair.
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